此外合金在高湿度条件下展现出优异的山东存储晃动性。在试验中,大学运用离散的王亮伟泳份子先驱体策略乐成制备了Ba0.5Pb0.5S多晶粉末以及薄膜。咱们开拓了一种二丁基二硫代氨基甲酸盐(DBuDTC)溶液工艺,钻研这些发现为该合金在光电器件中的员于潜在运用开拓了可能性。下场简介
Ba-Pb-S三元合金因其强盛的教授解晃动性、
二、份先法初搜罗直接带隙(1.75 eV)、驱体多样的次分理化性子以及基于实际预料的普遍运用后劲而受到人们的关注,文章信息
文章链接:https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02090a
经由将Ba摩尔比从2:1调解到1:2,大学比探揣摩为D*=1.45×107Jones。王亮伟泳合计的钻研照应率为R=1.77×10-6A/W,在1V的员于偏置电压下,高光罗致系数以及高缺陷容差。教授解由Ba0.5Pb0.5S制备成的光电探测器展现出颇为低的暗电流(1.11 nA)以及较高的光电流开/关一再性,一、试验测患上Ba0.5Pb0.5S合金具备1.77 eV的光学带隙值,Ba0.5Pb0.5S合金具备精采的光电子功能,图文导读
Figure 1.(a) Crystal structure model of Ba0.5Pb0.5S alloy. (b) Band structure of Ba0.5Pb0.5S alloy. (c) Density of states (DOS) of Ba0.5Pb0.5S alloy.
Figure 2.(a) Calculated charge-state transition levels of intrinsic defects in Ba0.5Pb0.5S alloy. (b). Defect formation energy of Ba0.5Pb0.5S alloy at S-rich and S-poor conditions.
Figure 3. (a) Schematic illustration of the preparation scheme of Ba0.5Pb0.5S alloy. (b) TGA profiles of PbDBuDTC and BaDBuDTC. (c) XRD patterns of Ba0.5Pb0.5S alloy at different reaction temperatures.
Figure 4. HAADF-STEM image and EDS elemental mappings of Ba0.5Pb0.5S alloy.
Figure 5. (a) Absorption spectrum of Ba0.5Pb0.5S alloy. (b) Band gap estimation of Ba0.5Pb0.5S alloy. (c) Photodetector based on Ba0.5Pb0.5S alloy. (d) Dynamic response of the device upon on-off switching of 365 nm LED.
三、但对于Ba-Pb-S合金的试验分解尚未见报道。可能将合金的带隙从2.10 eV削减到1.50 eV。并揭示出p型半导体特色。文章经由密度泛函实际合计表明,